当前位置:主页 > 科技论文 > 化学工程论文 >

探究电催化析氧反应有效的载体材料:贵金属的替代品

发布时间:2024-03-20 02:11
  能源被认为是世界人口的重要需求,由于人口激增和工业革命,全世界对能源的需求大大增加。几十年来,严峻的环境污染问题和化石燃料减少的趋势不断激励着研究人员,科学家和政策制定者去探索替代能源以满足世界人口对能源的需求。就可再生能源而言,氢(H2)燃料被视为清洁,可持续和环保的燃料。为了减少环境污染问题并增强可再生能源的能源供应和储存,通过电化学电解水分解制氢被认为是重要的可再生能源手段之一,其中借助聚合物质子交换膜电解槽(PEMWE)技术产生清洁能源H2是目前主要手段。但是,由于在电解池的阳极室中发生的析氧反应(OER)的缓慢动力学,大大抑制了电解池产生的H2的速率。实际上,OER被认为是复杂且关键的半反应,该过程需要转移四个电子来完成反应,与反应标准热力学数值1.23伏特相比,OER然后需要较大的过电势来克服能量壁垒。目前,已证明贵金属氧化物,尤其是二氧化铱(IrO2)和二氧化钌(RuO2)是有效生产氢气的OER催化剂。但是,这些贵金属非常昂贵,阻碍了该技术在工业规模上的商业化应用。因此,如今最小化利用OER复合材料中贵重金属并增强其活性和耐酸性被认为是一个巨大的挑战。这也将会使可再生能源...

【文章页数】:157 页

【学位级别】:博士

【文章目录】:
Abstract
摘要
Chapter Ⅰ Introduction
    1.1 Background
    1.2 Current environmental scenario
        1.2.1 Sources and occurrence of air pollution
        1.2.2 Sources and occurrence of water pollution
    1.3 Renewable energy sources
    1.4 Electrochemical approaches towards renewable energy
        1.4.1 Multifunctional electrochemical as-synthesized composites
            1.4.1.1 Trifunctionality electrocatalytic materials
            1.4.1.2 Bifunctional electrocatalytic materials
    1.5 Oxygen evolution reaction (OER) electrocatalysts
        1.5.1 Doping of transition metals into noble metal oxides
        1.5.2 Doping of noble metals into transition metal oxides
        1.5.3 Perovskites based OER materials
        1.5.4 Mixed oxides based OER materials
    1.6 Current Status of the OER catalysts
    1.7 Aim of the research study
        1.7.1 Materials, experimental methods, and characterization techniques
        1.7.2 Mixed oxide composite of IrO2 and MoO3
  •         1.7.3 Mixed oxide composite of RuO2 and MoO3
  •         1.7.4 Mixed oxide composite of IrO2 and WO3
  •         1.7.5 Conclusions and future recommendations
        1.8 Innovations in current research study
    Chapter Ⅱ Materials, experimental methods, and characterization techniques
        2.1 Experimental materials, chemical reagents, and instruments
            2.1.1 List of instruments
            2.1.2 List of chemical reagents, and materials
        2.2 Experimental methods
            2.2.1 Hydrothermal method
            2.2.2 Two step chemical method
        2.3 Physical characterization techniques
            2.3.1 Energy-dispersive X- ray spectroscopy (EDS)
            2.3.2 Brauner-Emmett-Teller (BET) surface areas
            2.3.3 X-Ray powder diffraction (XRD) analysis
            2.3.4 Scanning, field emission and transmission electron microscopic images(SEM,FE-SEM, TEM)
            2.3.5 X-Ray photoelectron spectroscopy (XPS) analysis
        2.4 Electrochemical performance analysis
            2.4.1 Electrodes preparations
            2.4.2 Reference electrode calibration
            2.4.3 Solution resistance measurements
            2.4.4 Voltammetry measurements
            2.4.5 Electrochemical properties calculations
                2.4.5.1 Tafel slope calculations
                2.4.5.2 Bulk mass activity calculations
                2.4.5.3 Turn over frequency (TOF) calculations
    Chapter Ⅲ Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient OER catalyst
        3.1 Introduction
        3.2 Synthesis of IrO2-MoO3 Composites
        3.3 Results and discussion
            3.3.1 Structural morphologies of as-synthesized composites
            3.3.2 XRD,EDS,and HAADF-STEM analysis
            3.3.3 XPS study
            3.3.4 Electrochemical performance of composites
        3.4 Summary
    Chapter Ⅳ Boosted up stability and activity of oxygen vacancy enriched RuO2/MoO3 mixed oxide
        4.1 Introduction
        4.2 Synthesis of RuxMo1-xOδcomposites
        4.3 Results and discussion
            4.3.1 Morphological analysis of various composites
            4.3.2 XRD and EDS analysis
            4.3.3 Electrochemical characterization of composites
            4.3.4 XPS study
        4.4 Summary
    Chapter V Facile synthesis of IrO2 nanoparticles decorated@WO3 as mixed oxide composite for outperformed oxygen evolution reaction
        5.1 Introduction
        5.2 Fabrication of different composites
            5.2.1 Synthesis of WO3 composite
            5.2.2 Synthesis of IrO2/WO3 composites
            5.2.3 Synthesis of pure IrO2 composite
        5.3 Results and discussion
            5.3.1 Structures of as-synthesized composites
            5.3.2 XRD characterization and compositional analysis
            5.3.3 Electrochemical characterizations of mixed oxide composites
            5.3.4 Reaction mechanism of oxygen evolution reaction (OER) in acidic media
            5.3.5 XPS study of mixed oxide composites
        5.4 Summary
    Chapter Ⅵ Conclusions and future recommendations
        6.1 Schematic conclusions
        6.2 Future recommendations
    References
    Published work during PhD
    Acknowledgement



    本文编号:3932796

  • 资料下载
    论文发表

    本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3932796.html


    Copyright(c)文论论文网All Rights Reserved | 网站地图

    版权申明:资料由用户da0f8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱[email protected]