当前位置:主页 > 理工论文 > 新能源论文 >

PTC太阳能加热装置在沼气工程的应用研究

发布时间:2024-02-25 20:39
  在中中北方,如果没有合适加热设备的沼气装置往往无法实现全年连续产气,尤其是在冬季,没有加热设备的沼气装置将不能稳定,高效产气。此外,沼气装置的加热设备还必须便宜、可靠、对环境无害、能产生较高温度以及高效,使用可再生能源作为沼气装置的外加热源可以满足上述条件,这正是本文研究的内容。 咸阳地区直射及散射的太阳辐射量显示,在该地区可以使用太阳能加热沼气装置以提高其发酵温度。 沼气装置内外温度的关系是决定加热设备设计的一个重要的因素,根据第二章所述,沼气装置内部的温度对沼气产量影响很大,当装置内温度下降时,沼气产量也下降。 在第四章中,使用energy plus这一能量模拟软件结合气象资料对沼气装置的加热进行了8760小时的模拟。 第四章分为两部分,第一部分是对两个位于地上的沼气装置的模拟,其中一个沼气装置有加热设备而另一个没有。第四章的第二部分是对于两个位于地下的沼气装置的模拟,一个使用温室结合太阳能的加热装置,另一个没有加热装置。结果表明,使用温室结合太阳能加热的效果好于其他三个,但是这一加热系统并不能达到最理想的温度,所以我们改进了这一装置,使用聚光型太阳能进行加热。与使用两个真空管相比...

【文章页数】:119 页

【学位级别】:硕士

【文章目录】:
摘要
ABSTRACT
CHAPTER 1: GENERAL INTRODUCTION
    1.1. Fossil fuel and renewable energy
        1.1.1. Fossil fuel
        1.1.2. Renewable energy
    1.2. Global energy gap
    1.3. Effect on environment
    1.4. Biogas
        1.4.1. Temperature
        1.4.2. pH value
        1.4.3. Percentage of solids
    1.5. Solar energy
        1.5.1. Flat solar heater
        1.5.2. Solar collector
    1.6. Using solar energy for heating biogas digester
    1.7. Preface of study
    1.8. Some software used in study
        1.8.1. AutoCAD
        1.8.2. SketchUp
        1.8.3. MATLAB
        1.8.4. EnergyPluse
        1.8.5. Openstudio Plug-in
    1.9. Innovation
CHAPTER 2: PROBLEMS STATEMENT: EFFECT OF CHANGING AMBIENT TEMPERATURE DIRECTION ON BIOGAS PRODUCTION
    2.1. Introduction
    2.2. Material and methods
        2.2.1. The experiment design and unit setup with measurement tools
        2.2.2. Biogas digesters
        2.2.3. The fermentation material and inoculants
        2.2.4. Gas production
        2.2.5. Temperature measurement
    2.3. Result and Discussion
        2.3.1. The relation between ambient temperature and the temperature inside the digesters
        2.3.2. The relation between the temperature inside the digesters and gas production
        2.3.3. The relation between the temperature inside the digesters and gas production in outdoor group
        2.3.4. The relation between the temperature inside the digesters and gas production in control room group
        2.3.5. Comparisons between the gas productions with different Ts in the two groups
    2.4. Conclusion and summary
CHAPTER 3: DESIGN AND NUMERICAL SIMULATION OF PARABOLIC TROUGH SOLAR COLLECTOR (PTC) FOR IMPROVE THE EFFICIENCY
    3.1. Introduction
    3.2. Design of PTC
        3.2.1. Focal point and Parabola design
            3.2.1.1. Focal point
            3.2.1.2. Frame Design
        3.2.2. Heating pipe
        3.2.3. The surface area of solar collector
    3.3. Solar energy calculation
        3.3.1. The solar energy flux incident on a tilted surface per day
            3.3.1.1. Extraterrestrial radiation on a horizontal surface outside earth's atmosphere (Ho)
            3.3.1.2. Total solar radiation flux incident on horizontal surface of the ground (H)
            3.3.1.3. Ratio of monthly average radiation on a horizontal surface to the monthly average daily extraterrestrial radiation (kt)
            3.3.1.4. Beam and diffuse components of daily radiation.
            3.3.1.5. Total solar radiation flux incident on a fixed slope surface(Ht)
        3.3.2. The solar energy flux incident on a tilted surface per Hour
            3.3.2.1. The clear sky beam radiation on a horizontal surface (Icb)
            3.3.2.2. The clear sky diffuses radiation on a horizontal surface (Icd)
            3.3.2.3. The clear sky total radiation on a horizontal surface(Ic)
            3.3.2.4. An hour clearness index(kt )
            3.3.2.5. Beam and diffuse components of radiation per hour
            3.3.2.6. Total radiation on tilted surface(IT)
    3.4. Conclusion
CHAPTER 4: SIMULATION OF SOLAR HEATING BIOGAS DIGESTERS ABOVE AND UNDER-GROUND FOR RAISING ORGANIC MATTER TEMPERATURE WITHOUT USING PTC
    4.1. Introduction
    4.2. Material and methods
        4.2.1. Biogas digester above ground
            4.2.1.1. Design of biogas digester above the ground
            4.2.1.2. Design of Solar heating system for biogas digester above ground
        4.2.2. Biogas digester underground
            4.2.2.1. Design of biogas digester underground
            4.2.2.2. Design of greenhouse
            4.2.2.3. Design of inlet
    4.3. Result and Discussion
        4.3.1. Environmental variables
        4.3.2. Biogas digester above ground (D1)
        4.3.3. Biogas digester above ground with heating system (D2)
            4.3.3.1. Biogas digester
            4.3.3.2. Heating system of Biogas digester above ground
        4.3.4. Biogas digester underground(D3)
        4.3.5. Biogas digester underground with inlet heating (D4)
            4.3.5.1. Biogas digester
            4.3.5.2. Inlet
            4.3.5.3. Greenhouse
        4.3.6. Comparison between four digesters
    4.4. Conclusion
CHAPTER 5: HEATING BIOGAS DIGESTER BY USING PTC AND GREEN HOUSE
    5.1. Introduction
    5.2. Material and methods
        5.2.1. Description of first part
            5.2.1.1. Biogas digester
            5.2.1.2. Solar heating system
            5.2.1.3. Greenhouse
            5.2.1.4. Design of hot water auxiliary
            5.2.1.5. Control unit
        5.2.2. Description of second part (Future design)
            5.2.2.1. Biogas digester
            5.2.2.2. Solar water heater
            5.2.2.3. The green house
    5.3. Result and Discussion
        5.3.1. Green house
        5.3.2. Solar water heater
        5.3.3. Biogas digester
        5.3.4. The new system
    5.4. Analyze of system and economic study
        5.4.1. Calculation of total energy for heating and Co2 emissions
        5.4.2. The overall energy collected by the system
        5.4.3. Economic study
    5.5. Conclusion
CHAPTER 6: CONCLUSION AND RECOMMENDATION
REFERENCES
LIST OF TABLE
LIST OF FIGURES
APPENDIX A
APPENDIX B
ACKNOWLEDGEMENT
CURRICULUM VITAE



本文编号:3910825

资料下载
论文发表

本文链接:https://www.wllwen.com/projectlw/xnylw/3910825.html


Copyright(c)文论论文网All Rights Reserved | 网站地图

版权申明:资料由用户64541***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱[email protected]